當(dāng)前位置: 首頁 SCI期刊 SCIE期刊 數(shù)學(xué) 中科院3區(qū) JCRQ1 期刊介紹(非官網(wǎng))
        Fractals-complex Geometry Patterns And Scaling In Nature And Society

        Fractals-complex Geometry Patterns And Scaling In Nature And SocietySCIE

        國際簡稱:FRACTALS  參考譯名:自然與社會中的分形復(fù)雜幾何模式和尺度

        • 中科院分區(qū)

          3區(qū)

        • CiteScore分區(qū)

          Q1

        • JCR分區(qū)

          Q1

        基本信息:
        ISSN:0218-348X
        E-ISSN:1793-6543
        是否OA:未開放
        是否預(yù)警:否
        TOP期刊:否
        出版信息:
        出版地區(qū):SINGAPORE
        出版商:World Scientific Publishing Co. Pte Ltd
        出版語言:English
        出版周期:Quarterly
        出版年份:1993
        研究方向:數(shù)學(xué)-數(shù)學(xué)跨學(xué)科應(yīng)用
        評價(jià)信息:
        影響因子:3.3
        H-index:36
        CiteScore指數(shù):7.4
        SJR指數(shù):0.673
        SNIP指數(shù):0.913
        發(fā)文數(shù)據(jù):
        Gold OA文章占比:39.15%
        研究類文章占比:99.69%
        年發(fā)文量:327
        自引率:0.2340...
        開源占比:0.388
        出版撤稿占比:0
        出版國人文章占比:0.48
        OA被引用占比:0.1324...
        英文簡介 期刊介紹 CiteScore數(shù)據(jù) 中科院SCI分區(qū) JCR分區(qū) 發(fā)文數(shù)據(jù) 常見問題

        英文簡介Fractals-complex Geometry Patterns And Scaling In Nature And Society期刊介紹

        The investigation of phenomena involving complex geometry, patterns and scaling has gone through a spectacular development and applications in the past decades. For this relatively short time, geometrical and/or temporal scaling have been shown to represent the common aspects of many processes occurring in an unusually diverse range of fields including physics, mathematics, biology, chemistry, economics, engineering and technology, and human behavior. As a rule, the complex nature of a phenomenon is manifested in the underlying intricate geometry which in most of the cases can be described in terms of objects with non-integer (fractal) dimension. In other cases, the distribution of events in time or various other quantities show specific scaling behavior, thus providing a better understanding of the relevant factors determining the given processes.

        Using fractal geometry and scaling as a language in the related theoretical, numerical and experimental investigations, it has been possible to get a deeper insight into previously intractable problems. Among many others, a better understanding of growth phenomena, turbulence, iterative functions, colloidal aggregation, biological pattern formation, stock markets and inhomogeneous materials has emerged through the application of such concepts as scale invariance, self-affinity and multifractality.

        The main challenge of the journal devoted exclusively to the above kinds of phenomena lies in its interdisciplinary nature; it is our commitment to bring together the most recent developments in these fields so that a fruitful interaction of various approaches and scientific views on complex spatial and temporal behaviors in both nature and society could take place.

        期刊簡介Fractals-complex Geometry Patterns And Scaling In Nature And Society期刊介紹

        《Fractals-complex Geometry Patterns And Scaling In Nature And Society》自1993出版以來,是一本數(shù)學(xué)優(yōu)秀雜志。致力于發(fā)表原創(chuàng)科學(xué)研究結(jié)果,并為數(shù)學(xué)各個(gè)領(lǐng)域的原創(chuàng)研究提供一個(gè)展示平臺,以促進(jìn)數(shù)學(xué)領(lǐng)域的的進(jìn)步。該刊鼓勵(lì)先進(jìn)的、清晰的闡述,從廣泛的視角提供當(dāng)前感興趣的研究主題的新見解,或?qū)彶槎嗄陙砟硞€(gè)重要領(lǐng)域的所有重要發(fā)展。該期刊特色在于及時(shí)報(bào)道數(shù)學(xué)領(lǐng)域的最新進(jìn)展和新發(fā)現(xiàn)新突破等。該刊近一年未被列入預(yù)警期刊名單,目前已被權(quán)威數(shù)據(jù)庫SCIE收錄,得到了廣泛的認(rèn)可。

        該期刊投稿重要關(guān)注點(diǎn):

        Cite Score數(shù)據(jù)(2024年最新版)Fractals-complex Geometry Patterns And Scaling In Nature And Society Cite Score數(shù)據(jù)

        • CiteScore:7.4
        • SJR:0.673
        • SNIP:0.913
        學(xué)科類別 分區(qū) 排名 百分位
        大類:Mathematics 小類:Geometry and Topology Q1 2 / 106

        98%

        大類:Mathematics 小類:Applied Mathematics Q1 39 / 635

        93%

        大類:Mathematics 小類:Modeling and Simulation Q1 29 / 324

        91%

        CiteScore 是由Elsevier(愛思唯爾)推出的另一種評價(jià)期刊影響力的文獻(xiàn)計(jì)量指標(biāo)。反映出一家期刊近期發(fā)表論文的年篇均引用次數(shù)。CiteScore以Scopus數(shù)據(jù)庫中收集的引文為基礎(chǔ),針對的是前四年發(fā)表的論文的引文。CiteScore的意義在于,它可以為學(xué)術(shù)界提供一種新的、更全面、更客觀地評價(jià)期刊影響力的方法,而不僅僅是通過影響因子(IF)這一單一指標(biāo)來評價(jià)。

        歷年Cite Score趨勢圖

        中科院SCI分區(qū)Fractals-complex Geometry Patterns And Scaling In Nature And Society 中科院分區(qū)

        中科院 2023年12月升級版 綜述期刊:否 Top期刊:否
        大類學(xué)科 分區(qū) 小類學(xué)科 分區(qū)
        數(shù)學(xué) 3區(qū) MULTIDISCIPLINARY SCIENCES 綜合性期刊 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS 數(shù)學(xué)跨學(xué)科應(yīng)用 2區(qū) 3區(qū)

        中科院分區(qū)表 是以客觀數(shù)據(jù)為基礎(chǔ),運(yùn)用科學(xué)計(jì)量學(xué)方法對國際、國內(nèi)學(xué)術(shù)期刊依據(jù)影響力進(jìn)行等級劃分的期刊評價(jià)標(biāo)準(zhǔn)。它為我國科研、教育機(jī)構(gòu)的管理人員、科研工作者提供了一份評價(jià)國際學(xué)術(shù)期刊影響力的參考數(shù)據(jù),得到了全國各地高校、科研機(jī)構(gòu)的廣泛認(rèn)可。

        中科院分區(qū)表 將所有期刊按照一定指標(biāo)劃分為1區(qū)、2區(qū)、3區(qū)、4區(qū)四個(gè)層次,類似于“優(yōu)、良、及格”等。最開始,這個(gè)分區(qū)只是為了方便圖書管理及圖書情報(bào)領(lǐng)域的研究和期刊評估。之后中科院分區(qū)逐步發(fā)展成為了一種評價(jià)學(xué)術(shù)期刊質(zhì)量的重要工具。

        歷年中科院分區(qū)趨勢圖

        JCR分區(qū)Fractals-complex Geometry Patterns And Scaling In Nature And Society JCR分區(qū)

        2023-2024 年最新版
        按JIF指標(biāo)學(xué)科分區(qū) 收錄子集 分區(qū) 排名 百分位
        學(xué)科:MATHEMATICS, INTERDISCIPLINARY APPLICATIONS SCIE Q1 19 / 135

        86.3%

        學(xué)科:MULTIDISCIPLINARY SCIENCES SCIE Q1 29 / 134

        78.7%

        按JCI指標(biāo)學(xué)科分區(qū) 收錄子集 分區(qū) 排名 百分位
        學(xué)科:MATHEMATICS, INTERDISCIPLINARY APPLICATIONS SCIE Q1 7 / 135

        95.19%

        學(xué)科:MULTIDISCIPLINARY SCIENCES SCIE Q1 18 / 135

        87.04%

        JCR分區(qū)的優(yōu)勢在于它可以幫助讀者對學(xué)術(shù)文獻(xiàn)質(zhì)量進(jìn)行評估。不同學(xué)科的文章引用量可能存在較大的差異,此時(shí)單獨(dú)依靠影響因子(IF)評價(jià)期刊的質(zhì)量可能是存在一定問題的。因此,JCR將期刊按照學(xué)科門類和影響因子分為不同的分區(qū),這樣讀者可以根據(jù)自己的研究領(lǐng)域和需求選擇合適的期刊。

        歷年影響因子趨勢圖

        發(fā)文數(shù)據(jù)

        2023-2024 年國家/地區(qū)發(fā)文量統(tǒng)計(jì)
        • 國家/地區(qū)數(shù)量
        • CHINA MAINLAND317
        • USA38
        • Malaysia36
        • Pakistan26
        • Mexico22
        • Saudi Arabia22
        • Iran19
        • Taiwan19
        • India17
        • Turkey15

        本刊中國學(xué)者近年發(fā)表論文

        • 1、A NOVEL COLLECTIVE ALGORITHM USING CUBIC UNIFORM SPLINE AND FINITE DIFFERENCE APPROACHES TO SOLVING FRACTIONAL DIFFUSION SINGULAR WAVE MODEL THROUGH DAMPING-REACTION FORCES

          Author: Yao, Shao-Wen; Arqub, Omar Abu; Tayebi, Soumia; Osman, M. S.; Mahmoud, W.; Inc, Mustafa; Alsulami, Hamed

          Journal: FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY. 2023; Vol. , Issue , pp. -. DOI: 10.1142/S0218348X23400698

        • 2、STUDY OF INTEGER AND FRACTIONAL ORDER COVID-19 MATHEMATICAL MODEL

          Author: Ouncharoen, Rujira; Shah, Kamal; Ud Din, Rahim; Abdeljawad, Thabet; Ahmadian, Ali; Salahshour, Soheil; Sitthiwirattham, Thanin

          Journal: FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY. 2023; Vol. , Issue , pp. -. DOI: 10.1142/S0218348X23400467

        • 3、DYNAMICS IN A FRACTIONAL ORDER PREDATOR-PREY MODEL INVOLVING MICHAELIS-MENTEN-TYPE FUNCTIONAL RESPONSE AND BOTH UNEQUAL DELAYS

          Author: Li, Peiluan; Gao, Rong; Xu, Changjin; Lu, Yuejing; Shang, Youlin

          Journal: FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY. 2023; Vol. , Issue , pp. -. DOI: 10.1142/S0218348X23400704

        • 4、NEW FRACTAL SOLITON SOLUTIONS FOR THE COUPLED FRACTIONAL KLEIN-GORDON EQUATION WITH beta-FRACTIONAL DERIVATIVE

          Author: Wang, Kangle

          Journal: FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY. 2023; Vol. 31, Issue 1, pp. -. DOI: 10.1142/S0218348X23500032

        • 5、A NEW FRACTAL TRANSFORM FOR THE APPROXIMATE SOLUTION OF DRINFELD-SOKOLOV-WILSON MODEL WITH FRACTAL DERIVATIVES

          Author: Liu, Fenglian; Yang, Lei; Nadeem, Muhammad

          Journal: FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY. 2023; Vol. 31, Issue 1, pp. -. DOI: 10.1142/S0218348X2350007X

        • 6、RESEARCH ON NONLINEAR VARIATION OF ELASTIC WAVE VELOCITY DISPERSION CHARACTERISTIC IN LIMESTONE DYNAMIC FRACTURE PROCESS

          Author: Zhang, Zhibo; Wang, Enyuan; Zhang, Hongtu; Bai, Zhiming; Zhang, Yinghua; Chen, Xu

          Journal: FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY. 2023; Vol. 31, Issue 1, pp. -. DOI: 10.1142/S0218348X23500081

        • 7、A NOVEL FRACTAL MODEL FOR SPONTANEOUS IMBIBITION IN DAMAGED TREE-LIKE BRANCHING NETWORKS

          Author: Wang, Peilong; Xiao, Boqi; Gao, Jun; Zhu, Huaizhi; Liu, Mingxing; Long, Gongbo; Li, Peichao

          Journal: FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY. 2023; Vol. 31, Issue 1, pp. -. DOI: 10.1142/S0218348X2350010X

        • 8、MEYER WAVELET NEURAL NETWORKS PROCEDURES TO INVESTIGATE THE NUMERICAL PERFORMANCES OF THE COMPUTER VIRUS SPREAD WITH KILL SIGNALS

          Author: Sabir, Zulqurnain; Baleanu, Dumitru; Raja, Muhammad Asif Zahoor; Alshomrani, Ali S. S.; Hincal, Evren

          Journal: FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY. 2023; Vol. 31, Issue 2, pp. -. DOI: 10.1142/S0218348X2340025X

        投稿常見問題

        通訊方式:WORLD SCIENTIFIC PUBL CO PTE LTD, 5 TOH TUCK LINK, SINGAPORE, SINGAPORE, 596224。

        主站蜘蛛池模板: 国产福利91精品一区二区| 在线精品亚洲一区二区| 丝袜美腿一区二区三区| 亚洲综合av永久无码精品一区二区| 无码av免费一区二区三区试看| 无码人妻精品一区二区三区9厂| 人妻无码一区二区三区免费| а天堂中文最新一区二区三区| 久久久国产精品无码一区二区三区 | 精品国产免费一区二区三区香蕉| 日韩精品国产一区| 亚洲国产韩国一区二区| 久久久久人妻精品一区蜜桃| 中文字幕色AV一区二区三区 | 麻豆AV一区二区三区久久| 中文字幕aⅴ人妻一区二区| 国产伦精品一区二区免费| 久99精品视频在线观看婷亚洲片国产一区一级在线 | 极品人妻少妇一区二区三区| 色窝窝无码一区二区三区成人网站| 成人精品一区二区三区不卡免费看 | 亚洲一区二区三区免费在线观看| 免费萌白酱国产一区二区三区| 不卡一区二区在线| 亚洲日韩精品无码一区二区三区 | 国产伦精品一区二区免费| 一区二区三区在线看| 国产福利电影一区二区三区久久久久成人精品综合| 国产精品一区二区毛卡片| 亚洲av色香蕉一区二区三区蜜桃| 高清精品一区二区三区一区| 在线免费一区二区| 亚洲日本一区二区一本一道| 中文字幕在线观看一区二区| 色窝窝无码一区二区三区 | 无码人妻精品一区二区三区99不卡| 国产一区二区三区福利| 亚洲一区视频在线播放| 一区二区三区福利视频免费观看| 亚洲天堂一区在线| 极品少妇伦理一区二区|