發布時間:2024-04-10 14:41:03
序言:作為思想的載體和知識的探索者,寫作是一種獨特的藝術,我們為您準備了不同風格的5篇二氧化碳排放現狀,期待它們能激發您的靈感。
中國二氧化碳排放量于2006年超過美國,位居世界第一,而且近幾年來中國的二氧化碳排放量持續增加,2012年全年排放量達到8106.43百萬噸。中國曾承諾將采取有效措施減少二氧化碳排放,并于2030年前停止增加二氧化碳的排放量。在實施減排任務同時對中國二氧化碳排放現狀及影響因素有一個細致的了解是十分有必要的。
一、中國二氧化碳排放來源
化石能源的消耗是造成二氧化碳排放的重要原因,中國經濟自改革開放以來迅猛發展,其中第二產業1978年至2015年的平均比重達到45%,第二產業的能源消耗總量占到總能源消耗量的80%以上,由此推斷,第二產業,尤其是工業部門是二氧化碳排放的重要來源。
在第二產業內部,不同細分行業的二氧化碳排放量存在差異,排在前五位的分別是電力、熱力的生產和供應業,石油加工、煉焦及核燃料加工業,黑色金屬冶煉及壓延業,非金屬礦物制品業和化學原料及化學制品制造業,分別占到40.1%、24.2%、7.3%、6.7%和6%。
農業活動的二氧化碳排放量占全國二氧化碳排放總量比例較低,而且農業生態系統在相當大的程度上能夠減少因人類活動造成的二氧化碳排放。但是,中國大規模的砍伐樹林、毀壞良田、破壞濕地等活動使農業生態系統的吸碳能力大幅度下降。
二、二氧化碳排放現狀
2000年至2012年,中國全國的二氧化碳排放總量從5389百萬噸增長至16572百萬噸,具體來看,2000年二氧化碳排放量排在前五的省市區分別為遼寧、廣東、河北、山東和山西,到2012年二氧化碳排放總量排在前五的則分別為山東、江蘇、廣東、河北和內蒙古,雖然排序發生了一些變化,但排在前五位的省市占比加總基本保持在35%左右,這說明我國二氧化碳排放的集中度基本保持不變。2000年至2012年中國全國的二氧化碳平均年增長幅度達到為9.81%,其中,海南、寧夏、內蒙古、陜西、青海、山東、廣西、新疆、福建、云南、江蘇、湖南、浙江和河南大于全國的二氧化碳平均增長速度,因此,這些地區的減排任務嚴峻。海南、寧夏兩地的增長速度大一部分原因在于其基數小,但若不引起重視,這兩地的二氧化碳排放量將超過其他地區。此外,值得注意的是內蒙古2012年的二氧化碳排放量已經位居第五,若仍然保持目前的增長速度,勢必會成為中國最大的二氧化碳排放地區。
從地區來看,2000年中國東部、中部和西部的二氧化碳排放量分別為2633百萬噸、1757百萬噸和999百萬噸,比重分別為48.87%、32.60%和18.53%;2012年中國東部、中部和西部的二氧化碳排放量分別為7733百萬噸、5340百萬噸和3500百萬噸,比重分別為46.66%、32.22%和21.12%。2000年至2012年,雖然三大地區對二氧化碳排放量的貢獻度排序依然為東部、中部和西部,但是東部的貢獻度明顯下降,中部基本保持不變,而西部的貢獻度明顯上升。東部、中部、西部和全國的二氧化碳排放量年平均增速為9.39%、9.71%、11.01%、9.81%,西部地區的增速明顯高于其他兩個地區和全國平均水平。
三、二氧化碳排放因素分析
人口、經濟增長、技術水平是影響二氧化碳排放的主要因素。
人口增長會通過兩種方式影響二氧化碳的排放:一是人口數量的增加會使得對能源的消費增加,進而導致二氧化碳排放量的增加;二是人口的增加可能會導致森林、濕地、草原等生態系統的破壞,減少其二氧化碳的吸收能力,間接造成二氧化碳排放量的增加。
經濟增長影響二氧化碳排放主要通過三種途徑:規模效應、結構效應和技術效應。規模效應對二氧化碳排放有促進作用,而結構效應和技術效應對二氧化碳排放有抑制作用。在經濟增長初期,經濟的增長主要依靠擴大生產規模,即擴要勞動力、資本、自然資源等生產要素投入量來保持經濟的快速增長,這會造成二氧化碳排放量的大量增加。隨著經濟的增長,經濟結構發生改變,過去高污染的工業經濟開始轉向清潔的技術型、服務型經濟,結構效應對二氧化碳排放的抑制作用開始顯現。另外,經濟增長帶來的技術進步也進一步抑制了二氧化碳的排放??偨Y來說,二氧化碳排放與經濟增長之間存在一個“倒U”型的關系,即二氧化碳排放量在初期隨著經濟的增長而增加,當經濟發展達到一個臨界點后,二氧化碳排放量隨經濟增長而開始減少,這就是庫茲涅茨曲線。
技術水平可以通過三大主要途徑影響二氧化碳的排放。第一,技術水平的提高可以實現節能產品的生產和應用,這將減少化石能源的使用量,進而減少二氧化碳的排放量;第二,技術水平的提高可增加對可再生清潔能源的利用,降低對化石能源的依賴程度;第三,隨著技術水平的不斷提高,人類社會的經濟發展模式發生改變,從以能源為要素投入的經濟增長方式逐漸過渡到以資本為要素投入的經濟發展方式。
四、結語
目前中國二氧化碳排放情況依然嚴峻,西部地區是未來二氧化碳減排應該著重注意的區域。在實行二氧化碳減排工作時,要充分認識到人口、經濟增長以及技術水平對其的影響作用,將他們納入一個統一的工作框架,制定一系列有效措施,以此實現在2030年前停止增加二氧化碳排放量的目標。
參考文獻:
[1] 韓玉軍,陸D. 經濟增長與環境的關系――基于對CO_2環境庫茲涅茨曲線的實證研究[J]. 經濟理論與經濟管理,2009.
[2]李國志. 基于技術進步的中國低碳經濟研究[D]南京:南京航空航天大學,2011.
1.1評價體系構建
由于低碳經濟其實質就是以較少的能源消耗獲取較大的經濟和環境效益,為了剔除規模差異對各地區CO2排放水平的影響和檢驗經濟整體活動對CO2排放的影響,在評價一個地區和省市低碳水平時,必須要兼顧經濟效益(GDP)和環境(CO2凈排放量)協調發展。為了研究問題方便,本文將29個省市分成華北、東北、華東、中南、西南、西北六大區域。華北包含北京、天津、河北、山西、內蒙古5個省、市、自治區;東北包含遼寧、吉林、黑龍江3個?。蝗A東包含上海、江蘇、浙江、安徽、福建、江西、山東7個省、市;中南包含河南、湖北、湖南、廣東、廣西、海南6個省、自治區;西南包含重慶、四川、貴州、云南4個省、市;西北包含陜西、甘肅、青海、寧夏4個省、自治區。根據美國經濟學家巴拉薩(Balassa)于1965年提出的顯示性比較優勢指數(RevealedComparativeAdvantageIndex,簡稱RCA指數)的測算原理[14],本文選擇人均CO2凈排放和單位GDP的CO2凈排放等指標構建CO2凈排放顯示性比較優勢指數測算模型,該模型包括2個部分。
1.2數據來源和處理
數據來源本文數據來自《中國統計年鑒》、《中國能源統計年鑒》。按照國家統計局對“能源消費總量(×104t標準煤)”定義的闡述,系指一定時期內,全國各行業和居民生活消費的各種能源的總和。包括原煤和原油及其制品、天然氣、電力。因此,本文在計算各省(市、自治區)CO2排放量過程中可以直接將各?。ㄊ小⒆灾螀^)能源消費總量乘以該?。ㄊ小⒆灾螀^)煤轉化成CO2的折算系數(指1t標準煤燃燒釋放的CO2數量(t),不需要提供石油、電力等折算系系數。而不同年份、不同省份標準煤轉化成CO2折算系數的數值是通過中國“十二五”各地區單位國內生產總值CO2排放下降(%)指標和各地區單位國內生產總值能源消耗下降(%)指標兩者相除,首先得到“十二五”各地區每年單位能耗CO2下降指標,并由此計算得出“十二五”各地區每年單位能耗CO2下降相對于全國平均指標的水平,將此作為因變量,年份作為自變量,采用外推模型[17]得到2005~2010年各因變量數值,即2005~2010年各地區每年單位能耗CO2下降相對于全國平均指標的相對水平。然后根據《中國統計年鑒》和《中國能源統計年鑒》[16]計算出2005~2010年各年全國平均單位能耗CO2排放量,并將該數值乘以上步驟計算得到的當年各地區單位能耗CO2下降指標相對全國平均指標的相對水平,即可得到2005~2010年各地區標準煤轉換成CO2的折算系數。2005~2010年各個區域人均和單位GDPCO2凈排放量的RECj,n、AECYj,n、RECi、AECYi等數值分別通過公式(1~6)計算得出。
2CO2凈排放空間格局及演變
2.1區域CO2凈排放空間格局及演變
區域人均CO2凈排放格局及演變圖1給出了2005~2010年六大區域人均CO2凈排放顯示性比較優勢指數變化趨勢。可以看出:2010年人均CO2凈排放量顯示性比較優勢指數從大到小依次為華北、東北、西北、華東、中南、西南。整體上呈現北高南低,且態勢十分明顯。其原因是北方地區多為資源型省份和重工業基地,其高耗能產業較多,能源利用效率偏低,技術水平相對落后。還可以看出:華北和東北地區2005~2010年人均CO2凈排放一直高于全國平均水平;而中南部地區、西南地區一直低于全國平均水平;華東地區在2007年以前高于全國水平,而2007年后低于全國水平;西北地區2009年以前低于全國水平,2009年開始高于全國水平。此外,還可以看出整個中南部地區人均CO2排放量相對全國維持2.1.2區域單位GDP的CO2凈排放格局及演變單位GDP的CO2凈排放量是每單位經濟產出所釋放的CO2量,反映了一個地區經濟發展對CO2凈排放的貢獻程度。圖2給出了2005~2010年六大區域單位GDP的CO2凈排放顯示性比較優勢指數變化趨勢。從AECYj,n的數值可知:當AECYj,n>1,說明該地區單位GDP的CO2凈排放量高于全國平均水平;1>AECYj,n>0則說明低于全國平均水平。中南和華東一直低于全國平均水平,說明2個區域在處理經濟增長和環境保護方面做得較好,在同樣經濟增長情況下,能最大限度降低對環境的污染。而西北、華北、東北、西南地區一直高于全國平均水平,其中西北地區最高,表明該地區碳排放強度(單位GDP的CO2排放量)最大,需采取節能減排措施,在保證經濟增長的同時,大力降低CO2排放量。從該圖還可以反映:中南地區雖然碳排放強度低于全國平均水平,但是2005~2010年出現增長的勢頭,如不加強控制,很可能在未來也處于高碳排放的行列。
2.2省域CO2凈排放空間格局及演變
2.2.1省域人均CO2凈排放格局本文將RECi>2的?。ㄊ?、自治區)定義為人均CO2凈排放強度區。2>RECi>1,為人均CO2凈排放中度區。1>RECi>0屬于人均CO2凈排放低度區。根據計算結果,寧夏、內蒙古屬于人均CO2凈排放超強區;江西、海南、云南、廣西、安徽等省屬于人均CO2凈排放低度區,其它省(市、自治區)屬于中度區。2005~2010年期間,北京、黑龍江、上海3個省市排名分別下降了5位以上,表明3個省市在人均CO2凈排放上下降幅度較大,而陜西、重慶2個省市排名上升了5位以上,表明該地區人均CO2凈排放加劇,政府應充分重視,及時采取行政等手段進行干預。
2.2.2省份單位GDP的CO2凈排放本文將AECYi>2的?。ㄊ?、自治區)定義為單位GDPCO2凈排放強度區。2>AECY>1定義為單位GDP二氧化碳凈排放中度區,1>AECY>0定義為單位GDP的CO2凈排放低度區。可見,寧夏、貴州、山西等一直屬于單位GDP的CO2凈排放超強區。北京、天津、黑龍江、上海、江蘇、浙江、安徽、福建、江西、廣東、廣西、云南一直屬于單位GDP的CO2凈排放低度區。吉林省2010年相對2005年下降了6位,說明該省單位GDP的CO2排放量下降趨勢明顯。而海南上升了5位,表明該省碳排放強度增高態勢明顯,在經濟增長的同時要大力減少CO2排放。
3結論與展望
第一,本文在充分考慮了各地區森林等對CO2凈吸收和不同年份,不同省市由于省市低碳技術等發展不均衡造成單位標準煤排放CO2數量有所差異的基礎上,對全國六大區域和全國29個省市對中國2005~2010年各區域和各省人均和單位GDP的CO2凈排放量進行了更為精準的計算,更加清楚地分析了中國CO2凈排放時空演變特性。
第二,本文將經濟學中顯示性比較優勢理論引進地理學的空間分析中,并與變異系數分析方法相結合,更為直觀的分析了各區域和各省市的CO2凈排放現狀和時空差異性。
第三,2005~2010年,華北和東北地區人均CO2凈排放一直較高,而中南、西南地區一直較低,區域差距逐漸縮小;中南和華東單位GDPCO2排放量一直較低,而西北、華北、東北、西南地區一直較高,西北地區最高。2007年以后各區域差異出現明顯縮小態勢;寧夏、內蒙古屬于人均CO2凈排放超強區;江西、海南、云南、廣西、安徽等省屬于低度區。北京、黑龍江、上海3個省市下降幅度較大,而陜西、重慶2省市上升加劇;省際間差異呈現“震蕩”,但總體略呈減小態勢;寧夏、貴州、山西等省一直屬于單位GDP的CO2排放超強區。北京、天津、黑龍江、上海、江蘇、浙江、安徽、福建、江西、廣東、廣西、云南一直屬于低度區。吉林下降趨勢明顯,而海南增高態勢明顯。2007年以后各省差異縮小。
盡管將顯示性比較優勢理論和變異系數分析方法的結合能夠較好的揭示中國CO2凈排放的時空格局演化特征,但是由于文章能夠選取的時間序列并不是很長,僅從2005~2010年,還需要進一步研究。
關鍵詞:化工行業;二氧化碳;兩階段核算模型;減排潛力;
作者簡介:顧佰和(1987-),男(滿族),遼寧丹東市人,中國科學院科技政策與管理科學研究所,博士研究生,研究方向:綠色低碳發展戰略與政策分析.
1引言
化工行業是經濟社會發展的支柱產業,同時也是耗能和溫室氣體排放大戶。國際石油和化工聯合會的統計數據顯示,2005年世界二氧化碳排放量約為460億噸,其中化學工業的二氧化碳排放為33億噸,約占7.1%[1]。中國是世界上最大的化工制品國之一。其中合成氨、電石、硫酸、氮肥和磷肥的產量均排名世界第一[2]。2000年到2010年,中國的化工行業工業產值增長迅速,其中幾種主要化工制品例如:乙烯、電石、燒堿、硫酸、甲醇、硝酸等產品的產量在此期間增長了50%以上。2000-2010年化學原料及化學制品制造業能源消費量逐年上升,年均增長8.86%[3],占全社會能源消費總量的比重基本保持在10%左右。
我國化工行業產品結構不合理,高消耗、粗加工、低附加值產品的比重偏高,精細化率偏低。美國、西歐和日本等發達國家和地區的化工行業精細化率已經達到60%~70%,而目前我國化工行業的精細化率不到40%。且我國化工行業工藝技術落后,高耗能基礎原材料產品的平均能耗比國際先進水平要高20%左右,因此我國化工行業存在較大的節能減排空間[4]。那么我國化工行業到底有多大的減排潛力,如何預測化工行業的溫室氣體減排潛力成為決策者和研究人員關注的焦點之一。
國內外學者圍繞行業溫室氣體減排潛力評估展開了一系列研究,但研究集中于鋼鐵行業[5-6]、電力行業[7-8]、交通行業[9-10]、水泥行業[11-12]等產品結構較為單一的行業。而由于化工行業的產品種類繁多,且工藝流程各不相同,目前對于化工行業的溫室氣體減排潛力研究,從研究對象上主要集中于少數幾種產品和部分工藝流程。Zhou[13]等全面細致的核算了中國合成氨生產帶來的二氧化碳排放和未來的減排潛力,并據此提出了促進減排的政策措施。Neelis[14]等學者從能量守恒的角度研究了西歐和新西蘭化工行業的68種主要工藝流程理論上的節能潛力。IEA[15-16]在八國集團的工作框架下,評估了化學和石油工業中49個工藝流程應用最佳實踐技術(BestPracticeTechnology)短期內所帶來的能效改善潛力。Patel[17]針對化學中間體和塑料等有機化學品給出了累積能源需求和累積二氧化碳排放量的核算流程和核算結果。
就關注的減排影響要素而言,主要涉及技術和成本兩方面。技術層面上,Park[18]等通過調查五種節能減排的新技術,使用混合的SD-LEAP模型評估了韓國石油煉制行業的二氧化碳減排潛力;Zhu[19]從技術進步的視角采用情景分析方法從整個行業的層面研究了中國化工行業的二氧化碳減排潛力,并提出一系列促進化工行業碳減排的措施;盧春喜[20]重點概述了氣-固環流技術在石油煉制領域中的研究與應用進展;王文堂[21]分析了目前化工企業節能技術進步所遇到的障礙,并對促進企業采取節能減排技術提出建議。成本方面,Ren[22]等對蒸汽裂解制烯烴和甲烷制烯烴兩種方式的節能和碳減排成本進行了對比;戴文智等[23]將環境成本作為石油化工企業蒸汽動力系統運行總成本的一部分,構建了混合整數非線性規劃(MINLP)模型,優化了多周期運行的石油化工企業蒸汽動力系統;高重密等[24]從綜合效益角度出發提出了化工行業實施碳減排的相關建議以及化工園區實施碳減排的管理模式;何偉等[25]設計了節能績效-減排績效關系圖及節能績效、減排績效與經濟效益協調關系三角圖。
在研究方法上,通過對以上文獻的歸納,不難發現情景分析已成為行業溫室氣體減排潛力的主流分析框架。已有的國內外大部分相關研究都采用情景分析方法[5-12,13,18,19]。情景分析方法是在對經濟、產業或技術的重大演變提出各種關鍵假設的基礎上,通過對未來詳細地、嚴密地推理和描述來構想未來各種可能的方案[26]。相比彈性系數法、趨勢外推法、灰色預測法等傳統的定量預測方法,情景分析法以多種假定情景為基礎,強調定性與定量分析相結合。情景分析法在進行預測時,不僅可根據預測對象的內在產生機理從定量方法上進行推理與歸納,還可對各不確定因素(自變量)的幾種典型的可能情況采取人為決策,從而更為合理地模擬現實。因此,情景分析法更加適用于影響因素眾多、未來具有高度不確定性的問題的分析。此外,情景分析法與傳統預測法還有一點顯著不同。傳統預測法試圖勾繪被預測對象未來的最可能發生狀況,以及這種可能程度的大小。而情景分析法采取的是一種多路徑式的預測方式,研究各種假設條件下的被預測對象未來可能出現何種情況。在情景分析中,各種假設條件不一定會自然出現,但通過這樣的分析,可幫助人們了解若要被研究對象出現某種結果需要采取哪些措施以及需要何種外部環境。
綜觀國內外學者的研究,有以下特點:從研究對象上來說,更多側重于化工行業產品層面二氧化碳減排潛力的研究,而鮮有從行業整體層面的研究;從研究要素上來說,一般只考慮單一要素對二氧化碳減排的貢獻,鮮有綜合考慮化工行業內部結構調整、技術進步、政策變動等多因素的研究。鑒于此,本文結合化工行業的產品結構特點構建了一套化工行業二氧化碳減排潛力綜合分析模型:首先結合化工行業產品種類繁多的特點,分別從行業和產品視角構建了一種兩階段二氧化碳排放核算模型;在此基礎上,綜合考慮化工行業的發展規模、結構調整、技術進步等因素,建立了化工行業二氧化碳減排潛力的情景分析方法,探索不同情景下化工行業的減排潛力和路徑。最后運用該方法以中國西部唯一的直轄市、國家首批低碳試點城市———重慶市的化工行業為例進行應用分析。最后提出了我國化工行業低碳轉型的對策建議。
2模型與分析方法
2.1核算邊界
化工行業的二氧化碳排放包括兩部分:一部分是由燃料燃燒產生的排放,另外一部分是工業過程和產品使用產生的排放。其中燃料燃燒產生的排放又分為化石燃料產生的直接排放以及電力、熱力消耗產生的間接排放,為了體現化工行業對區域二氧化碳減排的貢獻,本文將電力和熱力消耗產生的間接排放也計算在內。此外,一些化工產品在生產活動中是吸碳的,例如尿素的生產,這部分被吸收的二氧化碳需要在計算中扣除。
2.2化工行業二氧化碳排放兩階段核算模型
為了能夠得到化工行業全行業的二氧化碳排放量,同時能夠綜合考慮多種因素探索其二氧化碳減排潛力,本文針對化工行業特點構建了一種兩階段二氧化碳排放核算模型。模型中的主要參數名稱及其含義見表1。
2.2.1基于全行業視角的核算方法
行業視角核算方法主要針對化工行業二氧化碳排放的歷史和現狀。本文所研究的化工行業包括國民經濟行業分類中的化學原料及化學制品制造業、化學纖維制造業和橡膠制品業?;ば袠I是終端能源消費部門,通過能源平衡表,可以得到化工行業分能源品種的能源消耗量,根據2006年IPCC國家溫室氣體清單指南推薦的方法二,化工行業由燃料燃燒引起的二氧化碳排放量為:
部分產品在工業過程和產品使用中會產生二氧化碳排放,這部分排放量為:
此外,一些產品在生產過程中會吸收二氧化碳,被吸收的二氧化碳量為:
因此,基于行業視角核算的化工行業溫室氣體排放量為:
表1主要參數名稱及其含義下載原表
表1主要參數名稱及其含義
2.2.2基于產品視角的核算方法
化工行業產品種類雖多,但能耗相對集中在少數幾種高耗能產品上,2007年,合成氨、乙烯、燒堿、純堿、電石、甲醇這6種高耗能產品的能源消耗量占中國化工行業的54%[19]。現有的化工行業節能減排政策大部分集中在幾種主要的高耗能產品上,因此從產品層面探討化工行業的二氧化碳排放核算更具有現實意義。本文建立一種基于產品視角的核算方法來預測化工行業未來的二氧化碳排放。首先將化工行業由燃料燃燒引起的二氧化碳排放分為高耗能產品和其他產品兩部分。某種高耗能產品的二氧化碳排放量為:
其中EMi為第i種高耗能產品單位產品的二氧化碳排放量,計算方法見式(6):
由于除主要耗能產品外的其他產品種類多,單個產品的能源消耗量不大,能源利用效率數據難以獲得,所以難以從單位產品能耗的角度對這部分產品的二氧化碳排放進行核算,本文將這部分產品作為一個整體來考慮,引入單位產值的二氧化碳排放來解決這一問題。其他產品合計的二氧化碳排放量為:
工業過程和產品使用排放以及產品對二氧化碳的吸收同基于行業視角的核算方法。
因此,基于產品視角核算的化工行業溫室氣體排放量為:
2.3減排潛力情景分析模型
2.3.1減排潛力的定義
潛力就是存在于事物內部尚未顯露出來的能力和力量。而減排潛力即存在于某一溫室氣體排放主體內尚未發掘的減排能力。為了能夠量化表達,本文將減排潛力進一步定義為某一溫室氣體排放主體通過努力可以實現的減排量。
本文所關注的是化工行業未來的二氧化碳減排潛力,這里為化工行業設置多種不同的發展情景。不同情景下的行業內部結構、技術水平、所面臨的宏觀和微觀政策各不相同,相應的會得到不同的二氧化碳排放路徑。其中一種情景稱之為BAU(BusinessAsUsual)情景,也叫照常發展情景,該情景下化工行業現有的能源消費和經濟發展趨勢與當前的發展趨勢基本保持一致,沿用既有的節能減排政策和措施,不特別采取針對氣候變化的對策。其他情景中化工行業分別針對氣候變化做不同程度的努力。所謂化工行業的二氧化碳減排潛力,針對關注的指標不同,有兩類不同的含義。一是絕對二氧化碳減排潛力,即目標年份中其他各情景的二氧化碳排放量相比BAU情景的減少量;二是相對二氧化碳減排潛力,即目標年份的二氧化碳排放強度相比基準年份降低的百分比。
通過同一年份各情景與BAU情景二氧化碳排放總量的橫向比較,以及同一情景不同年份間二氧化碳排放強度的縱向比較,便可分別得到化工行業的絕對和相對二氧化碳減排潛力。
2.3.2情景分析模型
根據減排潛力的定義,y年份化工行業的絕對二氧化碳減排潛力為:
其中CEyBAU為y年份化工行業BAU情景的二氧化碳排放總量,CEly為y年份化工行業情景l下的二氧化碳排放總量。
相對二氧化碳減排潛力是針對二氧化碳排放強度設置的指標,化工行業的二氧化碳排放強度為:
,其中V為化工行業的工業增加值。由此可以得到,y年份化工行業的相對二氧化碳減排潛力為:
其中,為基準年化工行業的二氧化碳排放強度,CEIly為y年份化工行業在情景l下的二氧化碳排放強度。
3案例分析
3.1對象描述
本文應用上述模型方法以重慶市化工行業為例展開分析。化工行業是重慶市重要的支柱產業之一。2011年重慶市化工行業實現工業總產值902億元,占重慶市工業總產值的比重達到7.6%。重慶市缺煤少油,但天然氣資源豐富,重慶市是國內門類最齊全、產品最多,綜合技術水平最高的天然氣化工生產基地。但重慶市化工行業部分產品的工藝技術路線落后,產品結構有待調整優化。2009年重慶市化工行業的精細化率僅約20%,低于全國的30%-40%的平均水平,更低于發達國家的60%-70%的水平。
根據重慶市化工行業發展現狀和趨勢,本文選取了合成氨、燒堿、純堿、甲醇、石油加工、乙烯和鈦白粉這七種產品作為重慶市化工行業的主要耗能產品。其中,2005年合成氨、燒堿、純堿、甲醇和鈦白粉這五種產品合計的二氧化碳排放占化工行業總體排放的46.5%,而石油加工、乙烯將是重慶市化工行業“十二五”期間重點發展的石油化工產業鏈中的上游產品。本文利用前文所述的化工行業二氧化碳減排潛力分析模型,分析了重慶市化工行業分別到2015年和2020年的二氧化碳排放變化情況,并通過不同情景間的比較得到其減排潛力。
3.2情景設置
化工行業的能源消耗和二氧化碳排放主要由以下幾方面因素決定:產業發展規模,產業內部結構,高耗能產品的產量,技術結構的調整,產品的技術進步率等。本文根據以上這些因素為重慶市化工行業設計了三個發展情景。
在這三種情景中,重慶化工行業未來經濟發展變化的基本趨勢保持一致。2005—2011年重慶市化學工業總產值年均增長29.5%,未來重慶化工行業將繼續保持比較高的經濟增長速度。根據《重慶市化工行業三年振興規劃》,到2015年重慶市化工行業總產值將達到2000億元。由此本文設定2011-2015年重慶市化學工業總產值的年均增長率為23.0%,2015-2020年年均增長率降低到20.0%。與此不同的是,為了支持這種經濟的發展需求,三種情景分別設定了不同的能源消費增長和利用模式,具體描述如下。
表2情景定性描述表下載原表
表2情景定性描述表
3.3數據來源及處理過程
重慶市化工行業總產值和增加值現狀數據來自《重慶市統計年鑒》(2005-2012),化工行業未來總產值數據來自《重慶市化工行業三年振興規劃》;行業內部結構現狀數據來自《重慶市化工行業統計公報》(2005-2010);化工行業分能源品種能源消耗量數據來自《中國能源統計年鑒》(2005-2012);各主要耗能產品產量數據來自《重慶市統計年鑒》(2005-2012);各主要高耗能產品綜合能耗參照《中國化學工業年鑒》、《中國低碳發展報告2011~2012》、高耗能產品能耗限額標準(由國家標準化管理委員會制定和頒布)和《能效及可再生能源項目融資指導手冊(2008)》,各主要高耗能產品未來所采用的工藝比例和能源消耗參考《2050中國能源和碳排放報告》中的設置,不同的情景將設置不同的技術參數;各種一次能源的二氧化碳排放因子以及各主要耗能產品工業過程與產品使用的排放因子均來自《省級溫室氣體清單編制指南》,電力的二氧化碳排放因子參考中國國家發改委每年公布的“中國區域電網基準線排放因子的公告”,蒸汽的二氧化碳排放因子通過重慶市的能源平衡表間接計算得到,單位尿素吸收的二氧化碳量用尿素的碳含量(12/60)乘以二氧化碳與碳的轉換因子(44/12)得到。主要耗能產品的單價參照中國化工產品網的報價。
3.4結果分析
3.4.1絕對減排潛力
(1)行業總體排放情況
通過模擬計算,重慶市化工行業未來的二氧化碳排放量如下圖1所示。
圖1重慶化工行業各情景二氧化碳排放總量
圖1重慶化工行業各情景二氧化碳排放總量下載原圖
隨著石油化工的引進,未來重慶化工行業將進入一個飛速發展的階段。三個情景的二氧化碳排放總量都呈明顯的上升趨勢,但由于所采取的結構調整和技術改進措施不同,二氧化碳排放總量上升的幅度有所不同。
BAU情景中,由于精細化工比例不高,到2020年只為45%,技術進步率有限,二氧化碳排放上升幅度最大。2015年和2020年的二氧化碳排放量分別為2005年的7.5和13.3倍。
節能情景中,化工行業的精細化工比例相比BAU情景有所提高,到2020年達到50%,工藝設備的技術進步也更顯著。2015和2020年二氧化碳排放總量比BAU情景分別低492萬噸和1338萬噸。
低碳情景中,化工行業的精細化比例進一步提高,到2020年達到55%左右,主要耗能產品的技術水平達到或接近國際先進水平。2015年和2020年二氧化碳排放總量比BAU情景分別低985萬噸和2644萬噸。
(2)主要耗能產品排放情況
2005年,合成氨、燒堿、純堿、甲醇和鈦白粉這五種主要耗能產品合計的二氧化碳排放量占重慶市化工行業總體二氧化碳排放的46.5%。未來由于化工行業產品結構的調整,高能耗產品產出占化工行業的比例越來越低,加上化工行業工藝技術的改善,尤其對主要耗能產品進行的技術改造,使得主要耗能產品的二氧化碳排放量在重慶化工行業二氧化碳排放總量中所占的比重越來越低,見下圖2:
圖2八種主要耗能產品合計二氧化碳排放占化工行業總體比重
圖2八種主要耗能產品合計二氧化碳排放占化工行業總體比重下載原圖
BAU情景中,2015年八種主要耗能產品占化工行業總體二氧化碳排放的比重為29.7%,到2020年降低到18.4%。
節能情景中,2015年八種主要耗能產品占化工行業總體二氧化碳排放的比重降至26.2%,到2020年進一步降低到16.7%。
低碳情景中,2015年八種主要耗能產品占化工行業總體二氧化碳排放的比重為22.0%,到2020年進一步降低到15.2%。
雖然未來各情景主要耗能產品的二氧化碳排放占化工行業總體的比重有所下降,但仍在化工行業中占有重要的地位,未來在進行產品結構調整的同時,主要耗能產品的節能減排仍將是化工行業實現二氧化碳減排的重要方面。
3.4.2相對減排潛力
(1)行業總體相對減排潛力
重慶市化工行業未來的二氧化碳排放強度(萬元GDP二氧化碳排放量)如下圖3所示。
圖3重慶化工行業各情景二氧化碳排放強度
圖3重慶化工行業各情景二氧化碳排放強度下載原圖
與排放總量顯著上升形成鮮明對比的是,重慶化工行業的二氧化碳排放強度下降明顯。原因在于重慶化工行業在未來十年將進入一個飛速發展的階段,2020年重慶化工行業的增加值相比2005年將增加30倍。而由于對高耗能產品規模的控制,精細化工比例的大幅提高,化工行業內部結構得到不斷優化;同時由于化工行業的能效水平不斷提高,到2020年逐步接近或達到國際先進水平,使得三個情景中,2020年重慶化工行業的二氧化碳排放總量相比2005年分別只增加了13.3、11.6和9.9倍。從而導致三個情景化工行業的二氧化碳排放強度均有較大幅度的下降。各情景二氧化碳排放強度相比2005年降低幅度見下表3。
表3重慶化工行業各情景二氧化碳排放強度相比2005年降低百分比下載原表
表3重慶化工行業各情景二氧化碳排放強度相比2005年降低百分比
(2)主要耗能產品相對減排潛力
隨著節能減排技術的不斷改進和推廣,未來重慶市化工行業各主要耗能產品的單位二氧化碳排放量將不斷降低,由于篇幅有限,本文僅以合成氨為例進行分析。
重慶市合成氨均以天然氣為原料,2005年重慶市大型天然氣制合成氨的比重僅為3.8%。單位合成氨二氧化碳排放量為3.0噸。若扣除末端尿素固碳量,則2005年單位合成氨二氧化碳排放量為2.7噸。未來由于大型天然氣制合成氨所占比重越來越高,使得重慶市未來單位合成氨二氧化碳排放顯著降低,見下圖4和圖5。
圖4單位合成氨二氧化碳排放量
圖4單位合成氨二氧化碳排放量下載原圖
圖5單位合成氨二氧化碳凈排放量(去除尿素固碳)
圖5單位合成氨二氧化碳凈排放量(去除尿素固碳)下載原圖
BAU情景中,2015年大型天然氣制合成氨的比重達到50%,合成氨二氧化碳排放總量占化工行業總排放的6.7%,單位合成氨二氧化碳排放降低到2.2噸;2020年大型天然氣制合成氨的比重達到80%,合成氨二氧化碳排放只占化工行業總排放量的3.8%,單位合成氨二氧化碳排放進一步降低到1.8噸。
節能情景中,2015年大型天然氣制合成氨的比重達到60%,合成氨二氧化碳排放總量占化工行業總排放的5.3%,單位合成氨二氧化碳排放降低到2.0噸;2020年大型天然氣制合成氨的比重達到90%,合成氨二氧化碳排放總量占化工行業總排放的2.9%,單位合成氨二氧化碳排放進一步降低到1.6噸。若扣除末端尿素固碳量,2015年和2020年重慶市合成氨的二氧化碳排放量分別可減少117.3萬噸和146.7萬噸,單位合成氨二氧化碳排放分別降低到1.1噸和0.7噸。
低碳情景中,2015年大型天然氣制合成氨的比重達到70%,合成氨二氧化碳排放總量占化工行業總排放的3.8%,單位合成氨二氧化碳排放降低到1.8噸;2020年大型天然氣制合成氨的比重將達到100%,合成氨二氧化碳排放總量僅占化工行業總排放的2.3%,噸合成氨二氧化碳排放進一步降低到1.5噸。
4結語
[關鍵詞]旅游業;能源需求;二氧化碳排放;研究進展
[中圖分類號]F59
[文獻標識碼]A
[文章編號]1002-5006(2013)07-0064-09
引言
旅游業作為世界第一大經濟產業,每年國際旅游的人數約占全球總人口的1/6,如此龐大規模的人口“遷徙”對氣候、環境造成了實質性的影響,引起相關國際機構和學界的廣泛關注。第一屆全球氣候變化與旅游國際會議后,聯合國政府間氣候變化委員會(IPcc)、世界氣象組織(uNwM0)、世界旅游組織(uNwTO)等國際組織及其他研究機構達成共識:旅游業是能源消費的主要領域之一和溫室氣體排放的主要來源之一。旅游業能源需求和二氧化碳排放成為近5年來旅游研究的熱點。我國該方面研究起步較晚,2008年“旅游業節能減排”字樣首次出現在政府文件中,目前仍處于探索性研究階段。本文系統地對國內外旅游業能源需求和二氧化碳排放研究進行了回顧,以期通過國內外研究進展的對比分析,為下一階段我國旅游業能源需求和二氧化碳排放研究提供思路,為我國旅游業節能減排工作提供科學借鑒與參考。
1、國外旅游業能源需求與二氧化碳排放研究進展
旅游業能源需求與二氧化碳排放問題的實質是旅游環境影響以及氣候變化與旅游相互影響問題的延伸,國外該方面研究開展得很早,可追溯到20世紀中葉。通過對國外相關研究文獻的整理與分析,國外研究主要集中在旅游業能源需求與二氧化碳排放的結構與途徑,旅游業能源需求與二氧化碳排放量的定量測算、預測及旅游業節能減排措施等4個方面。其中,旅游業能源需求與二氧化碳排放量的測算是研究的重點。
1.1 旅游業能源需求與二氧化碳排放的途徑與結構
厘清旅游業能源需求與二氧化碳排放途徑是旅游業減緩溫室氣體排放工作的首要前提。由于旅游業產業關聯性高、產業鏈長,旅游活動靈活多樣,旅游業能源需求與二氧化碳排放途徑復雜且多元。盡管如此,國外相關研究較為一致地認為旅游業能源需求與二氧化碳排放主要集中在旅游交通(特別是國際長途旅游飛行)和在目的地為游客提供舒適的設施等。由于國家發展水平和旅游業發展階段不同,各國旅游業能耗需求與二氧化碳排放的途徑和比例結構有所差異,但旅游交通始終是各國旅游業能源需求與排放的重頭(表1)。旅游業所需的能源主要來自化石燃料中的石油。2006年,石油提供了全球40%的能源需求和90%的交通需求;未來15年,因交通和旅游業發展,石油占全球能源的比例將達60%。約曼等(Yeoman,et al.)在分析了全球經濟、石油替代能源生產及全球可持續發展需求等形勢后,認為隨著石油供應量的衰減及價格上漲,長期來看,將對蘇格蘭旅游業產生顛覆式的影響。而在發展中國家的鄉村地區,生物質特別是木材是主要的能源來源。尼泊爾安那波那保護區的住宿業每年要消耗掉3600噸薪材和近47.5萬升煤油。聯合國環境署和經合組織共同推出的一份最新報告顯示,在旅游業導致的二氧化碳排放中,航空占40%,汽車占32%,住宿占21%,剩下的7%分別被旅游活動(4%)和其他交通方式(3%)所排放。世界旅游組織研究報告顯示,2005年全球旅游交通和住宿業的二氧化碳排放總量分別為1192百萬噸和284百萬噸,占旅游業二氧化碳排放總量的比重分別約為63%和15%;其中,航空二氧化碳排放量為640百萬噸,占旅游交通排放的53.69%。高斯林(Gtissling)從能源需求、土地利用與覆被變化、物種多樣性等5個方面研究了全球旅游業的環境影響,結果表明,2001年全球旅游業因交通產生的耗能約為13223皮焦,占總能耗的94%;排放二氧化碳當量為1263百萬噸,占總排放的90.28%。住宿業能耗為508皮焦,占總能耗的3.5%;排放二氧化碳當量80.5百萬噸,占總排放的5.75%。剩下的為旅游活動所消耗和排放。貝肯等(Becken,et al.)用實證研究法對新西蘭旅游吸引物和旅游活動的能源消耗模式進行研究,發現旅游交通能耗占總能耗的65%~73%。
1.2 旅游業能源需求與二氧化碳排放的定量測算
旅游業能源需求與二氧化碳排放量的定量測算是最基礎但又最核心的研究內容,是旅游業應對氣候變化、制定節能減排措施的科學基礎與前提。旅游業的能源需求與排放涉及眾多行業和部門,包含直接和間接的能耗與排放,加上旅游業統計數據缺乏這一現實,旅游業能源需求與二氧化碳排放的定量測算是一個世界性的難題,是該領域研究的重點。
1.2.1 測算方法
從全球來看,目前尚沒有系統的關于旅游業能源消耗和二氧化碳排放量估算的方法。文獻研究顯示,目前最常用測算方法主要有兩種(表2),一種是借用全球氣候變化和可持續發展研究領域常用的碳足跡法(carbonfootprint approach)和生態足跡法(ecological footprint approach);另一種是“自下而上法(bottom-up approach)”,即直接計算旅游業各環節的能耗與排放,最終求得整個產業的能耗與排放數據。
(1)碳足跡是指企業機構、活動、產品或個人通過交通運輸、食品生產和消費以及各類生產過程等引起的溫室氣體排放的集合。從其定義不難看出,碳足跡法是對生產和消費全過程、直接和間接排放碳當量的追蹤,甚至不考慮碳發生的區域。澳大利亞資源能源旅游部從生產和消費兩個方面,運用碳足跡法估算了澳大利亞旅游業的溫室氣體排放。結果表明,2003~2004年間,澳大利亞旅游業碳足跡為1.15億噸。洛克等(Loke,et al.)利用碳足跡法研究了夏威夷能源需求與旅客數量急劇增加以及旅游者國別多樣化的關系,發現旅游者能耗占夏威夷總能耗的比重平均為60%;且國外游客比例越大,能耗需求也越大。
(2)生態足跡是指維持一個人、地區、國家或者全球的生存所需要的以及能夠吸納人類所排放的廢物、具有生態生產力的地域面積。旅游生態足跡即指維持旅游活動所需要的以及能夠吸納因旅游而排放的廢物、具有生態生產力的地域面積,其實質是一定區域內旅游活動對生態影響的一種定量測度。亨特(Hunter)認為,生態足跡法對理解旅游的環境影響具有實際意義,并且將被作為一項重要的旅游可持續發展的環境指標廣泛采用。羅伯特等(Roberto,et al.)采用生態足跡法,結合蘭薩羅特島旅行推斷模型,計算蘭薩羅特島公路旅游交通使用量及其對未來旅游業發展的影響。研究結果表明,蘭薩羅特島上的旅游交通主要是依賴于私家車,在接下來的10年里,公路旅游交通量還將持續增長,并達到飽和,蘭薩羅特島旅游交通在旅游生態足跡中所占的比重將會增大。
(3)“自下而上”法是從到達目的地游客的數據分析人手,向上逐級統計能耗與排放量。這種方法有兩個特點,一是邏輯算法簡單,但實際操作難度很大,既要求研究區域旅游業統計資料完備,同時還需要海量的實地調研數據;二是遺漏大部分旅游業間接的能耗與排放,導致估算結果總體偏小。但盡管如此,在實際研究工作中,自下而上法被采用得最多。前述的幾項關于全球旅游業能耗與排放的估算研究,其思路都暗含著自下而上法的運算邏輯。貝肯等采用“自下而上”法分析新西蘭南島西部海岸旅游者不同行為引致的能源消耗。研究結果表明,國際游客的能源消費總量是新西蘭國內游客的4倍?;粢撂氐龋℉owitt,et al.)采用“自下而上”法發現2007年單次往返于新西蘭的國際郵輪游客碳排放量范圍為250~2200克/人·公里,每位旅客在郵輪上的住宿所需的平均能耗約為1600百萬焦/晚,比陸地上的一般酒店能耗要高出12倍。
1.2.2 測算內容
據文獻整理研究,當前國外旅游業能源需求與二氧化碳排放的定量測算主要包含兩方面內容。一是對總量的定量測算。高斯林估算2001年全球旅游業共消耗能源14080皮焦,排放二氧化碳當量1399百萬噸。皮特爾斯等(Peeters,et al.)的測算表明旅游業導致了全球4.4%的二氧化碳排放。世界旅游組織和其他相關機構的一份聯合報告指出,2005年全球旅游業排放的二氧化碳約占全球二氧化碳排放總量的5%,該排放量所造成的影響,大約可以達到全球溫室效應的14%。江南等(Konan,et al.)的測算顯示,夏威夷旅游業的能源消耗占全州總能耗的60%。澳大利亞資源能源旅游部估算2004年澳大利亞旅游溫室氣體直接排放為470萬噸,間接排放為2810萬噸。尼泊爾(Nepal)測算了尼泊爾安那波那保護區鄉村旅游的能源消耗,結果表明住宿業每年約消耗3600噸薪材和47.5萬升煤油。二是對一些關鍵參數的定量測算,如交通工具、住宿方式、旅游活動的單位旅游能耗和排放強度。相關研究較多,并注意到了國別之間的差異。比如乘飛機旅行單位能耗為2.0百萬焦/人·公里,排放二氧化碳396克/人·公里;乘汽車旅行單位能耗為1.8百萬焦/人·公里,排放二氧化碳132克/人·公里;新西蘭酒店單位能耗為155百萬焦/床·晚,馬略卡島為51百萬焦/床·晚,桑給巴爾為256百萬焦/床·晚;新西蘭直升機滑雪單位能耗1300百萬焦/游客,潛水800百萬焦/游客,博物館參觀10百萬焦/游客;往返于新西蘭國際郵輪旅游者平均碳排放為390克/人·公里等。
1.3 旅游業能源需求與二氧化碳排放的預測及情景分析
研究旅游業能源需求與二氧化碳排放是為了把握未來的趨勢與動態,因此,許多專家學者對其預測及情景分析作了研究,以期能夠為有針對性的節能減排措施提供具體可靠的科學依據。世界旅游組織研究報告預測,以2005年為基準,在2035年以前,來自旅游業的二氧化碳排放將以2.5%的年均速度增長;其中住宿業二氧化碳排放的年均增速為3.2%。而皮特爾斯等的預計比世界旅游組織的預計高0.7個百分點,即2035年之前全球旅游業二氧化碳排放將以每年3.2%的增長率增加。杜波依斯等(Dubois,et al.)用敏感度分析法,以2000年為基準,預計按照當前旅游業增長趨勢,到2050年法國旅游休閑業溫室氣體排放將增加90%。
1.4 旅游業節能減排的措施研究
節能減排措施是旅游業能源需求與二氧化碳排放的最終落腳點。從國外研究進展看,目前已基本形成體系化的節能減排措施。世界旅游組織從旅游行業角度分別就政府、旅游企業及旅游者提出了比較系統的節能減排政策措施,同時還對交通、建筑、裝備制造等相關領域的節能減排提出了具體對策及技術途徑。理查德(Richard)利用仿真模型分析碳稅對國際旅游的影響,指出如果全球按1000美元/噸征收碳稅,則乘飛機的國際旅游將減少0.8%,相對應可減排二氧化碳0.9%。貝肯等研究表明,坐落在世界遺產拉明頓國家公園的生態客棧采取綠色全球21環境認證計劃,成功認證后,每年能耗大幅減低,二氧化碳排放每年減少189噸,節約15000澳元。除了政策或有關技術手段外,旅游者行為方式的選擇也是旅游業節能減排的重要方面。貝肯等研究發現,無論在國際旅游者還是國內旅游者能耗賬單中,交通始終占據主導地位,因此改變旅行方式能夠有效影響旅游者的能源需求。巴克利(Buckley)認為,“慢旅游”是一種有效的降低碳排放的旅游方式,它是指反對乘坐飛機等快速交通工具的旅游,更重視游的過程,強調旅游的過程和目的地同樣重要?!奥糜巍北貙l展成為一種未來旅游的流行方式。
2、我國旅游業能源需求與二氧化碳排放研究進展
我國旅游業能源需求與二氧化碳排放研究起步較晚,目前仍處于探索性研究階段。文獻資料研究表明,國內研究主要集中在旅游業能源需求與二氧化碳排放量的測算和旅游業節能減排的對策措施方面。
2.1 旅游業能源需求與二氧化碳排放的測算研究
我國旅游業能源需求與二氧化碳排放的測算研究涉及全國、省域/地區及產品層面。全國層面,石培華等首次系統地估算了全國旅游業的能耗與排放,結果表明,2008年我國旅游業消耗能源為428.3皮焦,排放二氧化碳51.34百萬噸L25 2。省域/地區層面,陶玉國等估算了2009年江蘇省旅游業直接的能耗和二氧化碳排放量,分別為32.56皮焦和3.7百萬噸,占江蘇能源總消耗量和碳排放總量的比例分別為0.53%和0.56%,旅游交通、住宿業和旅游活動占旅游能耗的比例分別為70.91%、17.32%和11.76%。章錦河等分別對四川省九寨溝、鄂西、湖南和江西等地旅游生態足跡、碳足跡進行了測算。另外,郭等(Kuo,et al.)對我國臺灣地區澎湖列島旅游業能耗與二氧化碳排放進行了測算,結果表明,每年澎湖列島旅游業消耗能源795.96百萬焦,排放二氧化碳5.05千克;其中,旅游交通能耗4.95×108百萬焦,排放二氧化碳3.38×108克,住宿業能耗為1.17×108百萬焦,排放二氧化碳8.56×108克,旅游活動耗能1.24×108百萬焦,排放二氧化碳7.71×108克。林(Lin)對臺灣地區墾丁等5個國家公園旅游交通的二氧化碳排放進行了研究,結果表明,近8年旅游交通的二氧化碳排放量在增加,5個國家公園平均每年排放二氧化碳16.1萬噸。產品層面,等以云南旅游市場最具代表性的香格里拉“八日游”系列產品為例,從生態足跡角度對該線路產品的生態效率進行了計算和分析。
2.2 旅游業節能減排的對策與措施
國內旅游業節能減排工作實踐最早從要素部門開始,從生態景區、循環景區到綠色飯店、綠色交通。對策與措施的研究緊跟實踐步伐,并最終拓展至旅游城市(圈)、全行業。章錦河以九寨溝和黃山兩個國內知名的生態型景區為例,以旅游廢棄物為手段定量測度旅游業能源需求與排放對生態的影響,認為合理控制游客規模、縮短旅行距離、減少乘飛機出游等是旅游業節能減排和建設生態型景區的有效舉措。王輝等提出要借鑒臺灣坪林地區的措施,給每個海島型景區設置一個“碳減量計數器”,以此增強游客節能降耗意識并約束自身的旅游行為方式,從而有效降低旅游活動的能耗與排放。李萍就酒店行業的節能減排,從發展理念、能源管理、引導消費觀到政策和制度保障提出了一系列具體的對策與建議。林研究了1999~2006年臺灣地區5個國家公園旅游交通的二氧化碳排放,提出政府可以通過提升管理效率,運用價格杠桿等降低碳排放,同時通過就近旅游、提高交通荷載、使用清潔能源及其他技術措施來降低旅游二氧化碳排放。蔡萌等從低碳旅游發展導則、低碳旅游設施、低碳旅游吸引物、低碳旅游體驗環境和低碳旅游消費方式等5個方面構建了低碳旅游城市模型,提出規范發展、互動發展、示范發展等城市旅游低碳發展的戰略舉措。萬幼清認為武漢城市圈旅游業節能減排需要提升綠化措施、優化綠地布局、加強水域生態保護。石培華等系統整理了旅游業各要素、各領域節能減排的技術手段、運行模式和制度安排。
近3年來,作為旅游業節能減排實現方式的低碳旅游,成為旅游學術界的研究熱點。在中國知網,以“低碳旅游”為主題或關鍵詞檢索,共得到有效文獻297篇。文獻數量統計表明,2011年共發表137篇,占全部文獻的46.13%;2010年和2012年各79篇,各占26.60%;2009年僅有2篇,占0.67%。而近300篇文獻中,僅有17篇(5.72%)發表在核心期刊,一定程度上表明研究的深度有限。研究內容主要集中在概念、內涵及特征研究,低碳旅游發展案例介紹,發展模式及實現的路徑、建議等。
3、國內外研究總結與對比
3.1 總結
整體而言,國外旅游業能源需求與二氧化碳排放研究主要在3個方面取得了進展:1)識別了旅游業能耗、排放的重點領域及結構;在旅游業能源消耗與二氧化碳排放的定量估算研究與情景分析方面形成初步結論。2)對各類型交通方式、住宿方式及旅游活動的單位能耗和二氧化碳排放等關鍵性參數有了一般性的認識,并識別了明顯的國別、地區及不同部門之間的差異。3)基本形成體系化的節能減排政策措施。但是,國外研究同時存在3個方面不足之處:1)雖然形成一些標志性成果,但總量不多,還沒有系統化和規模化的研究積淀;對旅游交通、住宿及旅游活動方式等單個領域和環節的實證研究多,地區性、全行業的系統研究較少。2)多是基于部分國家/地區的調查數據和經驗數據進行估算,尚沒有系統的估算方法和情景分析法。3)多以旅游發達國家或經濟發達國家為對象,針對發展中國家研究較少。
而從國內研究進展來看,主要有4個特征:1)起步晚,絕大多數研究是2009年之后開展的,且研究總量有限。2)現有的旅游業能耗及二氧化碳排放量的現狀估算研究更多地是參照國外已有研究的架構及經驗數據進行的,其中涉及的關鍵性數據如不同交通方式的能耗及排放參數等都是通過文獻研究得到的經驗數據,對我國的針對性和有效性不足。3)旅游業能源需求與二氧化碳排放的預測和情景分析至今仍是空白。4)旅游業節能減排對策與措施研究的科學支撐不足,宏觀對策多,具體的、有針對性的舉措少。
3.2 對比分析
主要從旅游業能源需求與二氧化碳排放的結構與途徑,旅游業能源需求與二氧化碳排放量的定量測算、預測及旅游業節能減排措施等4個方面進行對比分析(見表3)。
在旅游業能源需求與二氧化碳排放的結構與途徑研究上,國內外總體上是一致的,即重點都在旅游交通和住宿兩方面,但總量和結構有區別??偭可?,從全球來看,旅游業能耗及排放占全球的比重在5%左右,而我國則不到1%,無論是全國層面還是省域層面。結構上,國外旅游交通能耗及排放明顯高于國內,旅游活動則相反,國內要高于國外,住宿業能耗及排放水平比較接近,可能和我國住宿業從學習國外而開端有關。定量測算方法上,國內幾乎完全借鑒國外研究方法,沒有開發出適合我國旅游業特色的方法;定量測算的廣度國內外比較接近,但深度上國外明顯深于國內。預測方面國內目前仍是空白。對策與措施方面,國外已基本形成體系化、宏觀與微觀相結合的對策措施,國內對策體系尚未形成,以宏觀對策居多。
4、研究啟示與展望
結合國外研究進展,針對國內研究現狀,未來國內旅游業能源需求與二氧化碳排放研究應重點關注以下3個方面內容:
4.1 加強旅游交通和住宿等重點領域能源需求與排放的定量實證研究
總體來看,我國旅游業能源需求與排放的研究存在現狀不清、總量不明的問題;旅游交通能耗與排放情況完全空白,住宿業僅粗線條掌握全國四星級以上酒店的水電氣等能源消耗數據。因此,要加強旅游業特別是交通和住宿重點領域能耗與排放的定量測算;根據我國旅游業實際,對不同類型旅游交通方式、住宿業態、旅游活動單位能耗/排放強度等關鍵參數開展針對性定量實證研究;開展各種工程技術手段方面的節能降耗效率與能力的實證研究。
4.2 加強旅游業能源需求與排放的預測分析和情景研究
旅游業能耗與排放的科學實質是人類活動對全球環境變化的影響,也是國際全球環境變化人文因素計劃(IHDP)的重點研究內容之一。旅游業能耗/排放的預測與情景研究是衡量旅游活動對全球環境變化影響的重要前提,同時也是旅游業減緩和響應全球環境變化的科學依據。因此,必須強化對未來旅游業能源與排放不同情景的模擬研究與分析,為科學應對和減緩氣候變化對旅游業的影響、制定適應措施提供科學依據。
作為世界上最大的發展中國家,我國政府在2009年12月的哥本哈根國際氣候會議上對全世界作出鄭重承諾:到2020年我國單位國內生產總值的二氧化碳排放量比2005年下降40%~50%.而作為世界上最大的碳排放國家,我國的碳減排目標任重而道遠.當前,全球都在積極推行“低碳經濟”,各國都在努力實現“綠色生產”,力求減少碳排放量.我國政府在“十二五”規劃中提出節能減排的約束性目標,即單位國內生產總值能耗要降低16%,而二氧化碳排放要降低17%,主要污染物的排放總量要求減少8%到10%,同時把該目標進一步分解到全國各地區,要求各地區務必堅持綠色、低碳的新型發展理念,把節能減排作為貫徹落實科學發展觀、加快經濟發展方式轉變的一個重要出發點,發展資源節約型、環境友好型的生產消費模式,進而增強自身的可持續發展能力.一直以來,二氧化碳排放問題作為全球變暖背景下的一個新標識,是國內外眾多學者密切關注的重點.由于我國存在嚴重的區域經濟發展不平衡和地區資源稟賦差異,中國各省市地區的碳排放也存在顯著差異.要想制定出科學合理且有針對性的節能減排政策,就必須很好地把握中國各省市的碳排放情況,因此有必要對各省市碳排放量進行全面系統的測算.然而,截止目前,我國無論是國家層面的還是省級層面都沒有直接公布二氧化碳排放量的官方統計數據,國內外學者的測算研究都是基于對能源消費量的測算.那么,我國各省份二氧化碳排放量到底有多少,哪些因素對二氧化碳的排放產生影響?這些相關影響因素對二氧化碳排放的影響程度又是如何呢?這些問題的解決與否關系到我國節能減排政策制定的科學與否,也關系到低碳戰略實施成效的顯著與否.節能減排工作的順利開展,是我國經濟社會保持可持續發展的關鍵.本文參照IPCC(2006)以及國家氣候變化對策協調小組辦公室[3]和國家發改委能源研究所(2007)[4]的方法,運用相關方法對各省市地區的碳排放量數據進行估算,比較詳細估算了我國30個省市(直轄市、自治區)1997—2011年的二氧化碳排放量.
2各地區碳排放量的測算
考慮到二氧化碳排放的來源比較廣泛,除了化石能源燃燒外,在水泥、石灰、電石、鋼鐵等工業生產過程中,由于物理和化學反應的發生,也會有二氧化碳的排放,而在所有工業生產過程排放的二氧化碳中,水泥大約占56.8%,石灰大約占33.7%,而電石、鋼鐵生產所占不足10%.為了進一步增強估算的全面性和準確性,本文不僅估算了化石能源燃燒所產生的二氧化碳排放量,同時也估算了水泥生產過程產生的二氧化碳排放量.另外,為精確起見,本文進一步將化石能源消費細分為煤炭消費、焦炭消費、石油消費、天然氣消費,其中石油消費則更進一步細分為汽油、煤油、柴油、燃料油四類.所有化石能源消費數據都來自于歷年《中國能源統計年鑒》.水泥生產數據來自于國泰安金融數據庫.水泥生產過程產生的二氧化碳排放量具體計算公式如下:CC=Q×EFcement.(2)其中CC表示水泥生產過程中二氧化碳排放總量,Q表示水泥生產總量,而EFcement則是水泥生產的二氧化碳排放系數.本文估算水泥生產的二氧化碳排放量時,僅僅計算了化學反應產生的二氧化碳排放量,而沒有包含水泥生產過程中燃燒化石燃料而造成的二氧化碳排放量.表1列出了各類排放源的CO2排放系數.經過一系列準確計算,可以得到我國30個省市地區1997—2011年二氧化碳排放量的估計值.由表2的二氧化碳排放量估算值可以看出我國各省市地區碳排放量基本都呈現上升趨勢,地區差異比較明顯.為了更好的體現我國二氧化碳排放的地區差異性,將我國30個?。ㄊ?、區)按照經濟發展水平和其地理位置劃分為三大區域,包括東部地區、中部地區以及西部地區.具體來講,東部地區包括北京、河北、天津、遼寧、山東、江蘇、上海、浙江、福建、廣東和海南這11個?。ㄊ校恢胁康貐^主要包括黑龍江、吉林、山西、湖北、河南、湖南、安徽和江西這8個省份;西部地區則包括內蒙古、廣西、云南、貴州、四川、陜西、重慶、青海、寧夏、新疆、甘肅、(由于缺乏數據較多,未估算其二氧化碳排放量)這12個?。ㄊ?、區).表3顯示我國三大區域的碳排放量.表3的數據反映了我國及東中西部三大區域碳排放量情況.從總體上來看,1997—2011年我國的二氧化碳排放量呈現持續增長的趨勢,從1997年的336565.69萬噸增長至2011年的1066359.01萬噸,增長幅度達到729793.32萬噸,短短15年間排放量大約增長了2.17倍.由圖1可以明顯看出,在1997—2002年我國二氧化碳排放量處于緩慢增長的階段,這個階段我國的二氧化碳排放量年均增長為3.48%.這個階段產生的原因主要是受亞洲金融危機影響,我國出口貿易縮減,這在一定程度上減少了二氧化碳的排放.從2003年起,亞洲各國陸續走出金融危機的泥潭,我國經濟發展加速,但由于我國高投入、高消耗、高污染的粗放型經濟增長方式,使得我國這一階段的二氧化碳排放量處于快速增長期,2003—2007年我國二氧化碳排放量增速達到13.70%.之后我國二氧化碳排放量增速有所下降,2008—2011年增速為9.37%.雖然增長率依舊不低,但是相比于2003—2007年還是呈現下降趨勢.這說明我國意識到能源環境的重要性,開始探尋低碳經濟路徑,為實現綠色生產付出努力.特別是在2008年10月29日我國公布的《中國應對氣候變化的政策行動》白皮書,鄭重聲明了我國應對氣候變化問題的積極態度和相關行動,更是明晰了我國未來低碳發展路徑.從表3東中西部三大區域碳排放量情況可以明顯看出,我國的碳排放區域差異性是比較顯著的.總體來講,我國二氧化碳排放量呈現由東到西依次遞減的規律,東部地區碳排放量最多,中部地區次之,西部地區碳排放量最少.東部地區的二氧化碳排放在絕對量上大大超過中西兩大區域.從圖2可以看到,這三大區域二氧化碳排放均呈現逐年增長的趨勢,且其增長規律均與全國二氧化碳排放量一樣,可以分為三個階段:從1997—2002年三大區域的二氧化碳排放量有升有降,總體來說處于緩慢增長階段;從2003—2007年,三大區域的二氧化碳排放量均呈現不同程度的增長,整體處于快速增長階段;從2008—2011年,三大區域的二氧化碳排放量處于增速下降階段.圖2是我國1997—2011年30個省市地區二氧化碳排放量均值的降序排列圖.其中,二氧化碳排放量均值位于全國二氧化碳排放均值的省市地區有:山東、河北、江西、江蘇、河南、廣東、遼寧、內蒙古、浙江、四川和湖北.排名靠前的前五個省份是山東、河北、江西、江蘇和河南,分別占我國二氧化碳排放總量均值的8.71%、8.00%、7.68%、6.21%和5.95%.我國的主要二氧化碳排放大省均為傳統工業,能源消費以煤炭為主.二氧化碳排放量排名靠后的五個省份分別是天津、甘肅、寧夏、青海和海南,分別占我國二氧化碳排放總量均值的1.46%、1.44%、0.98%、0.40%和0.30%.圖3是我國1997—2011年各省碳排放年均增長率的降序排列圖.可以看到,二氧化碳排放年均增長率排名前五的省份是寧夏、內蒙古、海南、福建和山東,其中寧夏二氧化碳排放的年均增長率達到15.36%.寧夏出現較高二氧化碳排放速度的原因與其快速的經濟增長密切相關,1997年寧夏的國內生產總值為210.92億元,2011年為2102.21億元,增幅達到1891.29,增長了8.97倍.第二產業的產值占國內生產總值的比重由1997年的41.6%增長到了2011年的50.2%,增長了8.6個百分點.快速的經濟發展及不合理的產業結構刺激了二氧化碳的高速排放.除了以上二氧化碳排放年均增長率排名靠前的省份外,青海、陜西、廣西和新疆的年均增長率也均超過了10%,高于全國8.59%的平均增長水平.排名靠后的五個省份為遼寧、山西、黑龍江、上海和北京,其二氧化碳排放的年均增長率分別為6.47%、6.16%、5.41%、4.32%和1.95%,其中北京二氧化碳排放年均增長率以1.95%位居全國最低.
3我國各省區二氧化碳排放影響因素的實證研究
影響二氧化碳排放的相關因素很多,比如地理因素、經濟發展水平、產業結構、產權結構、能源消費結構、對外開放程度、投資水平、制度環境、城市化水平、能源價格等[5-8].考慮到客觀條件的限制,在考慮數據可得性基礎上,本文構建面板數據模型研究產業結構、出口貿易、能源消費結構、城市化水平、國內生產總值對二氧化碳排放的影響.本文選擇的面板數據模型如下:yit=α+Zitβ+ηi+εit.(3)其中,yit是第i個省份第t年人均二氧化碳排放量;α是常數項,β是回歸系數;ηi是個體效應,主要用來控制各省份自有的特殊性質,εit是外生解釋變量,主要包含國內生產總值(用gdp表示)、能源消費結構、城市化水平、產業結構及出口貿易等因素.其中,能源消費結構以煤炭消費量占能源消費量的比重度量(用energe表示),城市化水平以非農人口占總人口比重度量(用city表示),出口貿易以出口額占GDP的比重度量(用export表示),產業結構以第二產業占GDP的比重度量(用industry表示),同時對所有變量進行了取對數處理.結果顯示,該面板回歸模型擬合地較好,回歸系數具有較高的顯著性,其符號方向與現實情況較為符合.產業結構及國內生產總值對二氧化碳排放量的彈性系數較高,說明二氧化碳對產業結構及國內生產總值的變動比較敏感.第二產業占GDP的比重每增加1%,會使二氧化碳排放量增加0.9744%,這說明第二產業與碳排放呈現明顯的正相關關系,第二產業是二氧化碳排放的主要驅動因素.經濟每增長1%,二氧化碳排放量則會增加0.5812%,這說明經濟增長也是碳排放量增多的一個重要因素,二者呈現正相關關系.能源消費結構與出口貿易與碳排放量的彈性系數在1%水平上不顯著.
4結論與政策建議