發布時間:2023-10-12 15:34:57
序言:作為思想的載體和知識的探索者,寫作是一種獨特的藝術,我們為您準備了不同風格的5篇高中數學筆記整理大全,期待它們能激發您的靈感。
數學比較理性,熟練掌握、運用,需要我們理論與實踐相結合,也就是看書與做題,下面給大家分享一些關于高中數學學習方法四種總結,希望對大家有所幫助。
高中數學學習方法四種11.先看專題一,整數指數冪的有關概念和運算性質,以及一些常用公式,這公式不但在初中要求熟練掌握,高中的課程也是經常要用到的。
2.二次函數,二次方程不僅是初中重點,也是難點。
在高中還是要學的內容,并且增加了一元二次不等式的解法,這個就要根據二次函數圖像來理解了!解不等式的時候就要從先解方程的根開始,二次項系數大于0時,有個口訣得記下:“大于號取兩邊,小于號取中間”。
3.因式分解的方法這個比較重要,高中也是經常用的,比如證明函數的單調性,常在做差變形是需要因式分解,還有解一元多次方程的時候往往也先需要分解因式,之后才能求出方程的根。
4.判別式很重要,不僅能判斷二次方程的根有幾個,大于零2個根;
等于零1個根;小于零無根。而且還能判斷二次函數零點的情況,人教版必修一就會學到。集合里面有許多題也要用到。
高中數學學習方法四種21.不少同學都會有個相同的錯誤,就是在老師講課的時候,拼命的做筆記,做計算。
這都是徒勞或者是低效的。最有效的是拋開一切,認真理解老師的解題思路,千萬不要糾結某個計算結果或者是某個環節,你所要理解的是,一道題如何一環環的解開和每一個環節的原理。
2.要學好高中數學,最主要的是自己做題,千萬不可依賴老師或者同學,不提倡題海戰術,因為做一道新題要比你做一百道同樣的題強很多。
每做完一道題,要總結出解題的思路方法。
3.整個高中最難的一塊就是函數,而函數又恰巧學在前面,導致很多學生受挫。
函數一塊的話,可以先了解一下函數圖象的一塊,借助圖象來解函數問題,非常方便。
4.看書能明白,聽老師講題覺得很簡單,但一到自己做,就不會了。
這是一個通病。主要原因不是因為高中的數學有多難,而是思維沒有轉變過來。初中的題一般比較簡單,所以死記解題方法都可以,但是高中數學就不行了。
高中數學學習方法四種3一、“棄重求輕”,培養興趣:女生數學能力的下降,環境因素及心理因素不容忽視.目前社會、家庭、學校對學生的期望值普遍過高.而女生性格較為文靜、內向,心理承受能力較差,加上數學學科難度大,因此導致她們的數學學習興趣淡化,能力下降.
二、“笨鳥先飛”,強化預習:要提高課堂學習過程中的數學能力,課前的預習至關重要.教學中,要有針對性地指導女生課前的預習,可以編制預習提綱,對抽象的概念、邏輯性較強的推理、空間想象能力及數形結合能力要求較高的內容,要求通過預習有一定的了解,便于聽課時有的放矢,易于突破難點.認真預習,還可以改變心理狀態,變被動學習為主動參與.三、“開門造車”,注重方法
教師要指導女生“開門造車”,讓她們暴露學習中的問題,有針對地指導聽課,強化雙基訓練,對綜合能力要求較高的問題,指導她們學會利用等價轉換、類比、化歸等數學思想,將問題轉化為若干基礎問題,還可以組織她們學習他人成功的經驗,改進學習方法,逐步提高能力.
四、“揚長補短”,增加自信:教學中要注意發揮女生的長處,增加其自信心,使其有正視挫折的勇氣和戰勝困難的決心.特別要針對女生的弱點進行教學,多講通解通法和常用技巧,注意速度訓練,分析問題既要“由因導果”,也要“執果索因”,暴露過程,激活思維;注重數形結合,適當增加直觀教學,訓練作圖能力,培養想象力;揭示實際問題的空間形式和數量關系,培養“建模”能力
高中數學學習方法四種4一、基礎必須要扎實。講新課的時候要好好聽課,爭取一次聽懂。數學講究舉一反三。這些基礎題目相當于母題了。試卷時一般有百分之六十至七十的基礎題。
二、關于選擇題。試卷上一般是以選擇題開頭,做的題多了,一般算一遍就能出答案了,相信第一感覺。前10個一般為基礎題,比較好做,花的時間不會太多。后2個難度系數就大了,可以先放放,有時間再做或者簡單計算,可以四選一嘛。
三、About大題。這個就是最后沖刺階段了。前幾個,難度適當,題型也比較固定,最好是按部就班的來,寫一步有一步的分數,就算結果不對,分數也不會低的。后兩個大題,就屬于高檔題了,可以先做前幾個小題,最后一問就是腦力勞動了,視時間而定。
四、合理把握時間。平常的學習時間要合理規劃。可抽出一小部分時間翻翻錯題集,個人感覺蠻有用,溫故而知新。
高中數學學習方法四種總結相關文章: 高中數學學習方法:知識點總結最全版
高中數學學習方法總結
最新高中數學學習方法總結
高中數學四大學習方法
高中數學學習技巧的四個方法
高一數學學習方法總結大全
高中數學學習方法心得體會
2020高一數學學習方法總結大全
高中數學常用方法總結
數學上,立體幾何(Solid geometry)是3維歐氏空間的幾何的傳統名稱—-因為實際上這大致上就是我們生活的空間。一般作為平面幾何的后續課程。下面小編給大家分享一些高二數學學好立體幾何的方法,希望能夠幫助大家,歡迎閱讀!
高二數學學好立體幾何的方法第一、建立空間觀念,提高空間想象力。
從認識平面圖形到認識立體圖形是一次飛躍,要有一個過程。有的同學自制一些空間幾何模型并反復觀察,這有益于建立空間觀念,是個好辦法。有的同學有空就對一些立體圖形進行觀察、揣摩,并且判斷其中的線線、線面、面面位置關系,探索各種角、各種垂線作法,這對于建立空間觀念也是好方法。此外,多用圖表示概念和定理,多在頭腦中“證明”定理和構造定理的“圖”,對于建立空間觀念也是很有幫助的。
第二、掌握基礎知識和基本技能。
要用圖形、文字、符號三種形式表達概念、定理、公式,要及時不斷地復習前面學過的內容。這是因為《立體幾何》內容前后聯系緊密,前面內容是后面內容的根據,后面內容既鞏固了前面的內容,又發展和推廣了前面內容。在解題中,要書寫規范,如用平行四邊形ABCD表示平面時,可以寫成平面AC,但不可以把平面兩字省略掉;要寫出解題根據,不論對于計算題還是證明題都應該如此,不能想當然或全憑直觀;對于文字證明題,要寫已知和求證,要畫圖;用定理時,必須把題目滿足定理的條件逐一交待清楚,自己心中有數而不把它寫出來是不行的。要學會用圖(畫圖、分解圖、變換圖)幫助解決問題;要掌握求各種角、距離的基本方法和推理證明的基本方法——分析法、綜合法、反證法。
第三、不斷提高各方面能力。
通過聯系實際、觀察模型或類比平面幾何的結論來提出命題;對于提出的命題,不要輕易肯定或否定它,要多用幾個特例進行檢驗,最好做到否定舉出反面例子,肯定給出證明。歐拉公式的內容是以研究性課題的形式給出的,要從中體驗創造數學知識。要不斷地將所學的內容結構化、系統化。所謂結構化,是指從整體到局部、從高層到低層來認識、組織所學知識,并領會其中隱含的思想、方法。所謂系統化,是指將同類問題如平行的問題、垂直的問題、角的問題、距離的問題、惟一性的問題集中起來,比較它們的異同,形成對它們的整體認識。牢固地把握一些能統攝全局、組織整體的概念,用這些概念統攝早先偶爾接觸過的或是未察覺出明顯關系的已知知識間的聯系,提高整體觀念。
高二數學記筆記三大誤區誤區之一:筆記成了教學實錄
有的同學習慣于“教師講,自己記,復習背,考試模仿”的學習,一節課下來,他們的筆記往往記了幾頁紙,可以說是教材和教師板書的“映射”,成了教學實錄。這些同學過分依賴筆記,忽視老師的講解,忽視思考,以為老師講的沒有聽懂不要緊,只要課后認真看筆記就可以了。殊不知,這樣做往往會忽視老師的一些精彩分析,使自己對知識的理解膚淺,增加學習負擔,學習效率反而降低,易形成惡性循環。一般來講,在高中數學的學習中,上課要以聽講和思考為主,并簡明扼要地把教師講的思路記下來,課本上敘述詳細的地方可以不記或略記。同時,要記下自己的疑問或閃光的思想。如老師講概念或公式時,主要記知識的發生背景、實例、分析思路、關鍵的推理步驟、重要結論和注意事項等;對復習講評課,重點要記解題策略(如審題方法、思路分析、最優解法等)以及典型錯誤與原因剖析,總結思維過程,揭示解題規律。記筆記時,不要把筆記本記滿,要留有余地,以便課后反思、整理,這樣既可以提高聽課效率,又有利于課后有針對性的復習,從而收到事半功倍的效果。
誤區之二:筆記本成了習題集
翻開一些同學的數學筆記本,可以說是高考試題大全以及一些解題技巧、一題多解之類的集錦,很少涉及知識點之間的聯系、思想方法的提煉及解題策略的整理,沒有自己的鉆研體驗,筆記本成了習題集。誠然,做題是學習數學的基本途徑,多積累一些習題也是必要的,但若一味做題抄
錄,不認真領悟其中蘊含的重要數學思想和方法,是學不好數學的。經驗告訴我們,少量典型習題及其解法的確要記在筆記本上,但不能就題論題,而是要把重點放在習題價值的挖掘上,即注意寫好解題評注。這就好比安裝在高速公路兩旁的路標,它們會提醒你何時減速,何時急轉彎,何時遇到岔路口等。解題也是如此,易錯之處或重要的解題思想,要用簡短精煉的詞語作為評注,把閃光的智慧用筆頭記下來,這對積累經驗,提升數學素養大有裨益。隔一段時間后,再把它們拿出來推敲一番,往往會溫故知新。總之,筆記應成為自己研究數學的心得,指引學習前進方向的路標。
誤區之三:筆記本成了過期“期刊”
有些同學的筆記本好比過期期刊,時間一長就棄于一旁,沒有發揮它應有的作用,實在可惜。事實上,許多高考優勝者的經驗之一就是使自己的筆記成為個人的“學習檔案”和最重要的復習資料。因為,好的筆記是課本知識的濃縮、補充和深化,是思維過程的展現與提煉。合理利用筆記可以節省時間,突出重點、提高效率。當然,還要經常對筆記進行階段性整理和補充,建立有個性的學習資料體系。如可以分類建立“錯題集”,整理每次練習和考試中出現的錯誤,并作剖析;還可以將筆記整理為“妙題巧解”、“方法點評”、“易錯題”等類別。只要這樣堅持做下去,不斷擴大成果,就能克服“盲點”,走出“誤區”,到了緊張的綜合復習階段,就會顯得輕松、有序,還可以騰出更多的精力和時間,把所學知識系統化、信息化。
高二如何避免數學學習枯燥化1.依賴心理
數學教學中,學生普遍對教師存有依賴心理,缺乏學習的主動鉆研和創造精神。一是期望教師對數學問題進行歸納概括并分門別類地一一講述,突出重點難點和關鍵;二是期望教師提供詳盡的解題示范,習慣于一步一步地模仿硬套。事實上,我們大多數數學教師也樂于此道,課前不布置學生預習教材,上課不要求學生閱讀教材,課后也不布置學生復習教材;習慣于一塊黑板、一道例題和演算幾道練習題。長此以往,學生的鉆研精神被壓抑,創造潛能遭扼殺,學習的積極性和主動性逐漸喪失。在這種情況下,學生就不可能產生"學習的高峰體驗"--高漲的激勵情緒,也不可能在"學習中意識和感覺到自己的智慧力量,體驗到創造的樂趣"。
2.急躁心理
急功近利,急于求成,盲目下筆,導致解題出錯。
一是未弄清題意,未認真讀題、審題,沒弄清哪些是已知條件,哪些是未知條件,哪些是直接條件,哪些是間接條件,需要回答什么問題等;
二是未進行條件選擇,沒有"從貯存的記憶材料中去提缺題設問題所需要的材料進行對比、篩選,就"急于猜解題方案和盲目嘗試解題";
三是被題設假象蒙蔽,未能采用多層次的抽象、概括、判斷和準確的邏輯推理;
四是忽視對數學問題解題后的整體思考、回顧和反思,包括"該數學問題解題方案是否正確?是否最佳?是否可找出另外的方案?該方案有什么獨到之處?能否推廣和做到智能遷移等等"。
3.定勢心理
定勢心理即人們分析問題、思考問題的思維定勢。在較長時期的數學教學過程中,在教師習慣性教學程序影響下,學生形成一個比較穩固的習慣性思考和解答數學問題程序化、意向化、規律化的個性思維策略的連續系統--解決數學問題所遵循的某種思維格式和慣性。不可否認,這種解決數學問題的思維格式和思維慣性是數學知識的積累和解題經驗、技能的匯聚,它一方面有利于學生按照一定的程序思考數學問題,比較順利地求得一般同類數學問題的最終答案;另一方面這種定勢思維的單一深化和習慣性增長又帶來許多負面影響,如使學生的思維向固定模式方面發展,解題適應能力提高緩慢,分析問題和解決問題的能力得不到應有的提高等。
4.偏重結論